File:NZ opinion polls 2014-2017-majorparties.png

NZ_opinion_polls_2014-2017-majorparties.png (778 × 487 pixels, file size: 13 KB, MIME type: image/png)

Summary

Description
English: Graph showing support for political parties in New Zealand since the 2014 election, according to various political polls. Data is obtained from the Wikipedia page, Opinion polling for the Next New Zealand general election
Date
Source Own work based on very very lightly modified R Code from File:NZ_opinion_polls_2011-2014-majorparties.png
Author Limegreen


This file may be updated to reflect new information.
If you wish to use a specific version of the file without it being overwritten, please upload the required version as a separate file.
 
This chart was created with R.

Figure is produced using the R statistical package, using the following code. It first reads the HTML directly from the website, then parses the data and saves the graph into your working directory. It should be able to be run directly by anyone with R.

rm(list=ls())
require(mgcv)
require(tidyverse)

#==========================================
#Parameters - specified as a list
opts <- list()
opts$major <- list(parties= c("Green","Labour","National","NZ First"),   #use precise names from Table headers
                   ylims = c(0,65),   #Vertical range
                   fname= "NZ_opinion_polls_2014-2017-majorparties.png",
                   dp=0)  #Number of decimal places to round estimates to
opts$minor <- list(parties=c("ACT","Maori","United","Mana","Con", "TOP"   #please use "Maori" for the Maori party
                   ),
                   ylims = c(0,6),   #Vertical range
                   fname = "NZ_opinion_polls_2014-2017-minorparties.png",
                   dp=1) #Number of decimal places to round estimates to

#==========================================
#Shouldn't need to edit anything below here
#==========================================

#Load the complete HTML file into memory
html <- readLines(url("https://en.wiki.x.io/wiki/Opinion_polling_for_the_New_Zealand_general_election,_2017",encoding="UTF-8"))


# html <- read_html("http://en.wiki.x.io/wiki/Opinion_polling_for_the_next_New_Zealand_general_election",encoding="UTF-8")
closeAllConnections()

#Extract the opinion poll data table
tbl.no <- 1
tbl <- html[(grep("<table.*",html)[tbl.no]):(grep("</table.*",html)[tbl.no])]

#Now split it into the rows, based on the <tr> tag
tbl.rows <- list()
open.tr <- grep("<tr",tbl)
close.tr <- grep("</tr",tbl)
for(i in 1:length(open.tr)) tbl.rows[[i]] <- tbl[open.tr[i]:close.tr[i]]

#Extract table headers
hdrs <- grep("<th",tbl,value=TRUE)
hdrs <- hdrs[1:(length(hdrs)/2 -10)]
party.names <- gsub("<.*?>","",hdrs)[-c(1:2)] %>% #nasty hack
  gsub(" ","_",.) %>% #Replace space with a _ 
  gsub("M.{1}ori","Maori",.) #Apologies, but the hard "a" is too hard to handle otherwise
  
# party.cols   <- gsub("^.*bgcolor=\"(.*?)\".*$","\\1",hdrs)[-c(1:2)]
party.cols <- c("#00529F", "#D82A20", "#098137", "#000000", "#EF4A42",
                "#FDE401", "#501557", "#00AEEF", "#770808", "#151A61")
names(party.cols) <- party.names

#Extract data rows
tbl.rows <- tbl.rows[sapply(tbl.rows,function(x) length(grep("<td",x)))>1]

###UGLY HACK
#party.names <- party.names[1:9]

#Now extract the data
survey.dat <- lapply(tbl.rows,function(x) {
  #Start by only considering where we have <td> tags
  td.tags <- x[grep("<td",x)]
  #Polling data appears in columns other than first two
  dat     <- td.tags[-c(1,2)]
  #Now strip the data and covert to numeric format
  dat     <- gsub("<td>|</td>|<b>|</b>|<td style=|background:#[0-9A-Z]{6}","",dat)
  dat     <- gsub("\"", "", dat)
  dat     <- gsub("%","",dat)
  dat     <- gsub("-","0",dat)
  dat     <- gsub("<|>","",dat)
  dat     <- as.numeric(dat)
  if(length(dat)!=length(party.names)) {
    stop(sprintf("Survey data is not defined properly: %s",td.tags[1]))
  }
  names(dat) <- party.names
  #Getting the date strings is a little harder. Start by tidying up the dates
  date.str <- td.tags[2]                        #Dates are in the second column
  date.str <- gsub("<sup.*</sup>","",date.str)   #Throw out anything between superscript tags, as its an reference to the source
  date.str <- gsub("<td>|</td>","",date.str)  #Throw out any tags
  #Get numeric parts of string
  digits.str <- gsub("[^0123456789]"," ",date.str)
  digits.str <- gsub("^ +","",digits.str)    #Drop leading whitespace
  digits     <- strsplit(digits.str," +")[[1]]
  yrs        <- grep("[0-9]{4}",digits,value=TRUE)
  days       <- digits[!digits%in%yrs]
  #Get months
  month.str <- gsub("[^A-Z,a-z]"," ",date.str)
  month.str <- gsub("^ +","",month.str)        #Drop leading whitespace
  mnths     <- strsplit(month.str," +",month.str)[[1]]
  #Now paste together to make standardised date strings
  days  <- rep(days,length.out=2)
  mnths <- rep(mnths,length.out=2)
  yrs <- rep(yrs,length.out=2)
  dates.std <- paste(days,mnths,yrs)
  #And finally the survey time
  survey.time <- mean(as.POSIXct(strptime(dates.std,format="%d %B %Y")))
  #Get the name of the survey company too
  survey.comp <- td.tags[1]
  survey.comp <- gsub("<sup.*</sup>","",survey.comp)
  survey.comp <- gsub("<td>|</td>","",survey.comp)
  survey.comp <- gsub("<U+2013>","-",survey.comp,fixed=TRUE)
  survey.comp <- gsub("(?U)<.*>","",survey.comp,perl=TRUE)
  survey.comp <- gsub("^ +| +$","",survey.comp)
  survey.comp <- gsub("-+"," ",survey.comp)
  
  #And now return results
  return(data.frame(Company=survey.comp,Date=survey.time,date.str,t(dat)))
})

#Combine results
surveys <- do.call(rbind,survey.dat)

##ugly date fix
surveys[26, 2] <- "2015-10-06 00:00:00"
surveys[29, 2] <- "2015-11-15 00:00:00"

#Ugly fix to remove Opportunities party while not enough data
# surveys <- select(surveys, -TOP)


#==========================================
#Now generate each plot
#==========================================


smoothers  <- list()
for(opt in opts) {
  
  #Restrict data to selected parties
  selected.parties <- gsub(" ","_",sort(opt$parties))
  selected.cols <- party.cols[selected.parties]
  plt.dat   <- surveys[,c("Company","Date",selected.parties)]
  plt.dat <- subset(plt.dat,!is.na(surveys$Date))
  plt.dat <- plt.dat[order(plt.dat$Date),]
  plt.dat$date.num  <- as.double(plt.dat$Date)
  plt.dat <- subset(plt.dat,Company!="2008 election result")
  plt.dat$Company <- factor(plt.dat$Company)
  
  #Setup plot
  ticks <- ISOdate(c(rep(2014,1),rep(2015,2),rep(2016,2),rep(2017,2),2018),c(rep(c(7,1),4)),1)
  xlims <- range(c(ISOdate(2014,11,1),ticks))
  png(opt$fname,width=778,height=487,pointsize=16)
  par(mar=c(5.5,4,1,1))
  matplot(plt.dat$date.num,plt.dat[,selected.parties],pch=NA,xlim=xlims,ylab="Party support (%)",
          xlab="",col=selected.cols,xaxt="n",ylim=opt$ylims,yaxs="i")
  abline(h=seq(0,95,by=5),col="lightgrey",lty=3)
  abline(v=as.double(ticks),col="lightgrey",lty=3)
  box()
  axis(1,at=as.double(ticks),labels=format(ticks,format="1 %b\n%Y"),cex.axis=0.8)
  axis(4,at=axTicks(4),labels=rep("",length(axTicks(4))))
  
  smoothed <- list()
  predict.x <- seq(min(surveys$Date),max(surveys$Date),length.out=100)
  for(i in 1:length(selected.parties)) {
    smoother <- loess(surveys[,selected.parties[i]] ~ as.numeric(surveys[,"Date"]),span=0.35)
    smoothed[[i]] <- predict(smoother,newdata=predict.x,se=TRUE)
    polygon(c(predict.x,rev(predict.x)),
            c(smoothed[[i]]$fit+smoothed[[i]]$se.fit*1.96,rev(smoothed[[i]]$fit-smoothed[[i]]$se.fit*1.96)),
            col=rgb(0.5,0.5,0.5,0.5),border=NA)
  }
  names(smoothed) <- selected.parties
  #Then add the data points
  matpoints(surveys$Date, surveys[,selected.parties],pch=20,col=selected.cols)
  #And finally the smoothers themselves
  for(i in 1:length(selected.parties)) {
    lines(predict.x,smoothed[[i]]$fit,col=selected.cols[i],lwd=2)
  }
  
  # #Then add the data points
  # matpoints(plt.dat$date.num,plt.dat[,selected.parties],pch=20,col=selected.cols)
  # #And finally the smoothers themselves
  # for(n in selected.parties) {
  #   lines(smoothed.l[[n]]$date,smoothed.l[[n]]$fit,col=selected.cols[n],lwd=2)
  # }
  
  n.parties <- length(selected.parties)
  legend(grconvertX(0.5,"npc"),grconvertY(0.0,"ndc"),xjust=0.5,yjust=0,
         legend=gsub("_"," ",selected.parties), col=selected.cols,
         pch=20,bg="white",lwd=2,
         ncol=ifelse(n.parties>4,ceiling(n.parties/2),n.parties),xpd=NA)
  #Add best estimates
  fmt.str <- sprintf("%%2.%if\261%%1.%if %%%%",opt$dp,opt$dp)
  for(n in names(smoothed)) {
    lbl <- sprintf(fmt.str,
                   round(rev(smoothed[[n]]$fit)[1],opt$dp),
                   round(1.96*rev(smoothed[[n]]$se.fit)[1],opt$dp))
    text(rev(plt.dat$date.num)[1],rev(smoothed[[n]]$fit)[1],
         labels=lbl,pos=4,col=selected.cols[n],xpd=NA)
  }
  dev.off()
}

#==========================================
#Finished!
#==========================================

cat("Complete.\n")

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Any autoconfirmed user can overwrite this file from the same source. Please ensure that overwrites comply with the guideline.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

13 May 2016

File history

Click on a date/time to view the file as it appeared at that time.

(Newest | Oldest) View (newer 10 | ) (10 | 20 | 50 | 100 | 250 | 500)
Date/TimeThumbnailDimensionsUserComment
current21:06, 21 September 2017Thumbnail for version as of 21:06, 21 September 2017778 × 487 (13 KB)Limegreenadd latest polls, and also changed span to .24 to make the curve more responsive to recent volatility
00:08, 17 September 2017Thumbnail for version as of 00:08, 17 September 2017778 × 487 (12 KB)Limegreensome new polls
09:24, 14 September 2017Thumbnail for version as of 09:24, 14 September 2017778 × 487 (12 KB)Limegreenadd colmar brunton
08:50, 12 September 2017Thumbnail for version as of 08:50, 12 September 2017778 × 487 (12 KB)Limegreenadd latest newshub
01:30, 11 September 2017Thumbnail for version as of 01:30, 11 September 2017778 × 487 (12 KB)LimegreenSwitched to loess (span = .35) smoother, and added recent polls
13:46, 28 August 2017Thumbnail for version as of 13:46, 28 August 2017778 × 487 (11 KB)Limegreenadd new polls
11:48, 11 August 2017Thumbnail for version as of 11:48, 11 August 2017778 × 487 (11 KB)Limegreenadd new polls
22:23, 31 July 2017Thumbnail for version as of 22:23, 31 July 2017778 × 487 (11 KB)LimegreenAdd Newshub Reid Research
22:56, 30 July 2017Thumbnail for version as of 22:56, 30 July 2017778 × 487 (11 KB)Limegreenadd new colmar brunton poll. Also set k to 5 so that it matches the minor party figure.
10:36, 15 July 2017Thumbnail for version as of 10:36, 15 July 2017778 × 487 (11 KB)Limegreenadd 2 new polls
(Newest | Oldest) View (newer 10 | ) (10 | 20 | 50 | 100 | 250 | 500)

The following page uses this file:

Global file usage