Linear mapping

mapping that preserves the operations of addition and scalar multiplication

In mathematics (particularly in linear algebra), a linear mapping (or linear transformation) is a mapping f between vector spaces that preserves addition and scalar multiplication.[1][2][3]

Mirroring along an axis is an example of a linear mapping

Definition

change

Let V and W be vector spaces over the same field K. A function f: VW is said to be a linear mapping if for any two vectors x and y in V and any scalar (number) α in K, the following two conditions are satisfied:

 
 

Sometimes, a linear mapping is called a linear function.[4] However, in basic mathematics, a linear function means a function whose graph is a line. The set of all linear mappings from the vector space V to vector space W can be written as  .[5]

change

References

change
  1. Lang, Serge (1987). Linear algebra. New York: Springer-Verlag. p. 51. ISBN 9780387964126.
  2. Lax, Peter (2007). Linear Algebra and Its Applications, 2nd ed. Wiley. p. 19. ISBN 978-0-471-75156-4. (in English)
  3. Tanton, James (2005). Encyclopedia of Mathematics, Linear Transformation. Facts on File, New York. p. 316. ISBN 0-8160-5124-0. (in English)
  4. Sloughter, Dan (2001). "The Calculus of Functions of Several Variables, Linear and Affine Functions" (PDF). Retrieved 1 February 2014.
  5. "Comprehensive List of Algebra Symbols". Math Vault. 2020-03-25. Retrieved 2020-10-12.